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COMPUTING DIVISION POLYNOMIALS 

JAMES McKEE 

ABSTRACT. Recurrence relations for the coefficients of the nth division polyno- 
mial for elliptic curves are presented. These provide an algorithm for computing 
the general division polynomial without using polynomial multiplications; also 
a bound is given for the coefficients, and their general shape is revealed, with a 
means for computing the coefficients as explicit functions of n . 

1. INTRODUCTION 

Let k be a field with characteristic #A 2 or 3. Given a, b E k with 4a3 + 
27b2 #A 0, let E be the elliptic curve over k defined (as a projective plane 
curve over k) by the affine equation 

y2 = x3 + ax + b, 

with the special point being the point at infinity. 
With the usual abelian group law on E, we have the notion of a multiplication- 

by-n map, for any integer n, denoted [n]. For positive integers n, we define 
division polynomials fn E Z[a, b][x] by the recursion formulae (cf. [4, p. 200]) 

fi = 1, 

f2 = 2, 

f3 = 3x4 + 6ax2 + 12bx-a2 
( 1) f4-=4X6+ 20ax4 + 80bx3- 20a2x2 - 16abx - 32b2 - 4a3, 

f2m = fm(fm+2f - fm-2fm,+i)/2 m> 3, 

f41+1 = (x3 + ax + b)2f21+2f?, - f21-lf+i, 
3 > 1> 

f41+3 = f2+3 - (x 3 + ax + b)2f21f?,+2, 1> 1. 

The vanishing of fn (x) for n odd, or of yfn (x) for n even, characterizes 
the kernel of [n]. As a polynomial in x, fn has degree X(n), where X(n) = 
(n2- 1)/2 if n is odd, and X(n) = (n2-4)/2 if n is even. The relation between 
fn and Weber's Y'n [3, p. 105] is that fn = Y,n for n odd, and fn = Yn/ly for 
n even. 

If x is given weight 1, a is given weight 2, and b is given weight 3, then 
all the terms in fn(a, b, x) have weight X(n) . Thus, the coefficient of xX(n) l 
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must be 0, and we have 

fn(a, b, x) = ao,o(n)xX(f) + al,o(n)axx(f)2 

+ ao, I (n)bxX(n)-l3 + . . + a,r, (n)arbsxx(n)-2r-3s + 

where ar,s(n) E Z. 
In this paper we give recurrence relations for the coefficients of a fixed di- 

vision polynomial; these can be used to compute the coefficients ar,, s(n) as 
functions of n and to compute the general nth division polynomial fn(a, b, x) 
using 0(n6) integer operations. The recurrence relations also provide bounds 
for the coefficients and reveal their general shape. 

2. STATEMENT OF MAIN LEMMA AND DEDUCTION OF RESULTS 

Define ar, s(n) = 0 if either r or s is negative, or if 2r + 3s > X(n) . Then 
fn(a, b, x) = Et fit(n)xt, where 

fit(n) = E ar,,s(n)arbs E Z[a, b]. 
2r+3s=X(n)-t 

Main Lemma. For n odd, and any i E Z, 

(i + 3)(i + 2)bfli+3(n) - (i + 2)(2n2/3 - 3/2 - i)af3i+2(n) 

(2) +((n2 - 2i)(n2 - 2i - 1)/4)fli(n) - 3n2baiI(n) 

+ (2n2a2/3) a fli+ (n) = 0 
+ O~~b 

and, with d = 2r + 3s, for any r, s E Z, 

d(d + 1/2)ar,s (n) = ((n2 + 3)/2 - d)(n2/6 - 1 + d)a,r l,s(n) 
- ((n2 + 5)/2 - d)((n2 + 3)/2 - d)ar,s_ (n) 

(3)2 + 3(r + 1I)n aer+l, s- 1(n) 
- (2(s + I )n 23)atr-2 ,s+l1(n) . 

For n even, we have similarly 

(i + 3)(i + 2)bfli+3(n) - (i + 2)(2n2/3 - 5/2 - i)afli+2(n) 

(4) +((n2 - 2i - 3)(n2 - 2i - 4)/4)13i(n) - 3n2ba li I (n) 

+ (2n2a2/3) a 
9ib, 

(n) = 

and 

d(d + 1/2)a,r,s(n) = (n2/2 - d)(n2/6 - 1/2 + d)a,r1l,s(n) 

(5) - ((n2 + 2)/2 - d)(n2/2 -.d)ar,s- I(n) 

+ 3(r + 1)n2a,r+l,s-l(n) 

- (2(s + I)n213)ar-2,s+1(n). 



COMPUTING DIVISION POLYNOMIALS 769 

TABLE 1 

n Computed maximum number Bound on number of digits 
of decimal digits in ar,s(n) implied by (6) 

6 5 22 
12 22 93 
24 90 381 

Corollary 1. There holds 

log(1 + jar,s(n)I) = 0(n2), 

where the implied constant is independent of r and s. 
Proof. Let Bd be a bound for I ar, s (n) I over 2r + 3s < d . We have Bo =B1 = 

n, and from (3) and (5) we deduce that 

Bd ? n2(d + n2/2)B 

for d > 2 and n > 5, and the cases n < 5 can be checked directly. Hence, 

n2 (n2 - 1/2)! 

(6) lar,s(n)I ? 
Bxn 

? [-((n2 - 1)/2)!]2(n2/2 + 1)! 

2(3n2+)1/2en2/2/7(n3 Taking logarithms gives the desired bound. 

Remark. This corollary suggests that the maximum number of digits in the 
coefficients of fn should grow like n2. This is reflected in Table 1. 

Corollary 2. There holds 

ar,s(n) = Pr,s(n) + (-1)nQr,s(n) 

where Pr,s and Qr,s are both odd polynomials in Q[n] (i.e., only odd powers 
of n occur), Pr,s has degree at most 4r + 6s + 1, and Qr,s has degree at most 
4r + 6s - 3. The denominators of Pr,s and Qr,s are (4r + 6s + 1)-smooth (i.e., 
they have no prime divisors greater than 4r + 6s + 1). 
Proof. Induction on 2r + 3s, using (3) and (5). o 

Remark. Using (3) and (5), one can compute explicit formulae for any desired 
ar,s(n) , e.g., 

) { n(n2 - 1)(n2 + 6), n odd, 

i n(n2 - 4)(n2 + 9), n even. 

Corollary 3. The general division polynomial fn (a, b, x) can be computed using 
0(n6) multiplications and divisions (of integers with 0(n2) digits by integers 
with 0(log n) digits) and 0(n6) additions (of integers with 0(n2) digits). 
Proof. Set x = 1. Starting with f,x(n)(n) = n, and fit(n) = 0 for t > X(n), 
one can use (2) or (4) as appropriate to compute fit(n) for t = %(n) - 1, X(n) - 
2, ..., 0. Each application of (2) or (4) requires 0(n4) integer operations of 
the type given in the statement of the corollary (using Corollary 1 to bound the 
coefficients), and 0(n2) applications are needed. 0 



770 JAMES McKEE 

3. A COMPARISON WITH THE TRADITIONAL MEANS FOR COMPUTING fn 

For specific values of a and b, using the recursion formulae (1) seems to be 
the best (i.e., quickest) method for computing fn(a, b, x). For computing the 
general division polynomial fn(a, b, x) E Z[a, b][x], however, this approach 
is very slow. By homogeneity, it suffices to compute fn(a, b, 1). The most 
time-consuming step is the final use of (1), which involves multiplying together 
polynomials in two variables, of degree 0(n2) in each, so having 0(n4) terms. 
Thus 0(n8) multiplications of integer coefficients are needed, if one uses "or- 
dinary" polynomial multiplication. By using divide and conquer [1, pp. 62-64] 
this can be reduced to 0(n4l102 3) = 0(n634) multiplications of integer coeffi- 
cients (with 0(n2) digits). Using FFT techniques [1, pp. 252 ff.] we can further 
reduce this to 0(n4(log n)2) multiplications of integer coefficients. Thus, using 
(1) with FFT would be ultimately faster than (2)/(4), but, for reasonable values 
of n, using (2)/(4) is better. 

Using PARI-GP on a Sun 3/60 workstation, we timed the last step in using (1) 
to compute fn for a few values of n (t, (n) in Table 2-this is an underestimate 
for the time to compute fn (a, b, 1)) . By comparison, t2(n) in Table 2 gives the 
time taken to compute fn (a, b, 1) from scratch, using (2) or (4) as appropriate. 
The polynomial f25(a, b, 1) has 8269 terms with coefficients up to 97 decimal 
digits long. For small n, using (1) beats using (2)/(4), but the latter method 
soon becomes better. 

TABLE 2. Comparing t1 (n), an underestimate of the time taken 
to compute fn(a, b, 1) using (1), with t2(n), the time taken 
using (2) or (4) as appropriate 

n t, (n) t2(n) 
10 is 6s 
15 29s 47s 
20 2 min 44s 3 min 5s 
23 13min3ls 9min29s 
25 27 min 23s 15 min 29s 

4. PROOF OF LEMMA 

First suppose n is odd. Fricke, in [2, p. 191], derives a partial differential 
equation for y/in, which for n odd translates directly into a partial differential 
equation for fn: 

(x3 + ax + b) ((n2 - 3/2)x2 + (2n2/3 - 1/2)a) 

- 3n2baIn + (2n2a2/3) f + n2 (n2 - 1)xfn/4 = 0. 

He comments that this provides linear relations between the coefficients of fn , 
which together with ao ,o(n) = n suffice to determine fn, but he complains 
that this "freilich schon bei n = 5 einen erheblichen Aufwand von Rechnung 
erfordert", implying that this is not a profitable approach. Here we disagree. 
Our aim is to make the solution more explicit. Note that although (7) is de- 
rived over C using complex-variable methods, it is just a formal identity in 
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Z[1/6, a, b][x] and as such holds over any field with characteristic not divid- 
ing 6. 

Equating coefficients of xi+' in (7) gives (2), at least for i > 0, but since 
fit = 0 for t < 0 one soon checks that (2) holds for negative i too. 

Set i = (n2 - 1)/2 - 2r - 3s in (2); then equating coefficients of arbs gives 
(3). 

For n even, replace fn by yfn in (7), giving 

(x3 + ax + b) a9 
-n- ((n2 - 9/2)X2 + (2n2/3 - 3/2)a) a fn 

2 2 ~~~32ba0fn + 2n2a2/)fn + ((n2 - 3)(n2 - 4)x/4)fn - 3n a + (2n-a0/3) . = ? 

Equating coefficients of xi+ gives (4) for i > 0, but again this extends to 
all i. 

Set i = (n2 - 4)/2 - 2r - 3s in (4); then equating coefficients of arbs gives 
(5). 0 
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