COMPUTING DIVISION POLYNOMIALS

JAMES McKEE

ABSTRACT. Recurrence relations for the coefficients of the *n*th division polynomial for elliptic curves are presented. These provide an algorithm for computing the general division polynomial without using polynomial multiplications; also a bound is given for the coefficients, and their general shape is revealed, with a means for computing the coefficients as explicit functions of n.

1. INTRODUCTION

Let k be a field with characteristic $\neq 2$ or 3. Given $a, b \in k$ with $4a^3 + 27b^2 \neq 0$, let E be the elliptic curve over k defined (as a projective plane curve over k) by the affine equation

$$y^2 = x^3 + ax + b$$

with the special point being the point at infinity.

With the usual abelian group law on E, we have the notion of a multiplicationby-n map, for any integer n, denoted [n]. For positive integers n, we define division polynomials $f_n \in \mathbb{Z}[a, b][x]$ by the recursion formulae (cf. [4, p. 200])

$$f_{1} = 1,$$

$$f_{2} = 2,$$

$$f_{3} = 3x^{4} + 6ax^{2} + 12bx - a^{2},$$

$$f_{4} = 4x^{6} + 20ax^{4} + 80bx^{3} - 20a^{2}x^{2} - 16abx - 32b^{2} - 4a^{3},$$

$$f_{2m} = f_{m}(f_{m+2}f_{m-1}^{2} - f_{m-2}f_{m+1}^{2})/2, \qquad m \ge 3,$$

$$f_{4l+1} = (x^{3} + ax + b)^{2}f_{2l+2}f_{2l}^{3} - f_{2l-1}f_{2l+1}^{3}, \qquad l \ge 1,$$

$$f_{4l+3} = f_{2l+3}f_{2l+1}^{3} - (x^{3} + ax + b)^{2}f_{2l}f_{2l+2}^{3}, \qquad l \ge 1.$$

The vanishing of $f_n(x)$ for *n* odd, or of $yf_n(x)$ for *n* even, characterizes the kernel of [n]. As a polynomial in x, f_n has degree $\chi(n)$, where $\chi(n) = (n^2-1)/2$ if *n* is odd, and $\chi(n) = (n^2-4)/2$ if *n* is even. The relation between f_n and Weber's ψ_n [3, p. 105] is that $f_n = \psi_n$ for *n* odd, and $f_n = \psi_n/y$ for *n* even.

If x is given weight 1, a is given weight 2, and b is given weight 3, then all the terms in $f_n(a, b, x)$ have weight $\chi(n)$. Thus, the coefficient of $x^{\chi(n)-1}$

©1994 American Mathematical Society 0025-5718/94 \$1.00 + \$.25 per page

Received by the editor September 28, 1992 and, in revised form, December 23, 1992, July 12, 1993, and September 14, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14H52; Secondary 11G99, 11Y16.

This work was supported by a studentship from the Science and Engineering Research Council.

must be 0, and we have

$$f_n(a, b, x) = \alpha_{0,0}(n)x^{\chi(n)} + \alpha_{1,0}(n)ax^{\chi(n)-2} + \alpha_{0,1}(n)bx^{\chi(n)-3} + \cdots + \alpha_{r,s}(n)a^rb^sx^{\chi(n)-2r-3s} + \cdots,$$

where $\alpha_{r,s}(n) \in \mathbb{Z}$.

In this paper we give recurrence relations for the coefficients of a fixed division polynomial; these can be used to compute the coefficients $\alpha_{r,s}(n)$ as functions of n and to compute the general nth division polynomial $f_n(a, b, x)$ using $O(n^6)$ integer operations. The recurrence relations also provide bounds for the coefficients and reveal their general shape.

2. STATEMENT OF MAIN LEMMA AND DEDUCTION OF RESULTS

Define $\alpha_{r,s}(n) = 0$ if either r or s is negative, or if $2r + 3s > \chi(n)$. Then $f_n(a, b, x) = \sum_t \beta_t(n) x^t$, where

$$\beta_t(n) = \sum_{2r+3s=\chi(n)-t} \alpha_{r,s}(n) a^r b^s \in \mathbb{Z}[a, b].$$

Main Lemma. For *n* odd, and any $i \in \mathbb{Z}$,

(2)

$$(i+3)(i+2)b\beta_{i+3}(n) - (i+2)(2n^2/3 - 3/2 - i)a\beta_{i+2}(n) + ((n^2 - 2i)(n^2 - 2i - 1)/4)\beta_i(n) - 3n^2b\frac{\partial\beta_{i+1}(n)}{\partial a} + (2n^2a^2/3)\frac{\partial\beta_{i+1}(n)}{\partial b} = 0,$$

and, with d = 2r + 3s, for any $r, s \in \mathbb{Z}$,

(3)
$$d(d+1/2)\alpha_{r,s}(n) = ((n^{2}+3)/2 - d)(n^{2}/6 - 1 + d)\alpha_{r-1,s}(n) - ((n^{2}+5)/2 - d)((n^{2}+3)/2 - d)\alpha_{r,s-1}(n) + 3(r+1)n^{2}\alpha_{r+1,s-1}(n) - (2(s+1)n^{2}/3)\alpha_{r-2,s+1}(n).$$

For *n* even, we have similarly

(4)

$$(i+3)(i+2)b\beta_{i+3}(n) - (i+2)(2n^2/3 - 5/2 - i)a\beta_{i+2}(n) + ((n^2 - 2i - 3)(n^2 - 2i - 4)/4)\beta_i(n) - 3n^2b\frac{\partial\beta_{i+1}(n)}{\partial a} + (2n^2a^2/3)\frac{\partial\beta_{i+1}(n)}{\partial b} = 0,$$

and

(5)
$$d(d+1/2)\alpha_{r,s}(n) = (n^2/2 - d)(n^2/6 - 1/2 + d)\alpha_{r-1,s}(n) - ((n^2 + 2)/2 - d)(n^2/2 - d)\alpha_{r,s-1}(n) + 3(r+1)n^2\alpha_{r+1,s-1}(n) - (2(s+1)n^2/3)\alpha_{r-2,s+1}(n).$$

768

n	Computed maximum number	Bound on number of digits		
	of decimal digits in $\alpha_{r,s}(n)$	implied by (6)		
6	5	22		
12	22	93		
24	90	381		

TABLE	1	

Corollary 1. There holds

$$\log(1+|\alpha_{r,s}(n)|)=O(n^2),$$

where the implied constant is independent of r and s.

Proof. Let B_d be a bound for $|\alpha_{r,s}(n)|$ over $2r + 3s \le d$. We have $B_0 = B_1 = n$, and from (3) and (5) we deduce that

$$B_d \leq \frac{n^2(d+n^2/2)}{d^2}B_{d-1},$$

for $d \ge 2$ and $n \ge 5$, and the cases n < 5 can be checked directly. Hence,

(6)
$$|\alpha_{r,s}(n)| \le B_{\chi(n)} \le \frac{n^{n^2}(n^2 - 1/2)!}{[((n^2 - 1)/2)!]^2(n^2/2 + 1)!} \sim 2^{(3n^2 + 1)/2} e^{n^2/2} / \pi n^3.$$

Taking logarithms gives the desired bound. \Box

Remark. This corollary suggests that the maximum number of digits in the coefficients of f_n should grow like n^2 . This is reflected in Table 1.

Corollary 2. There holds

$$\alpha_{r,s}(n) = P_{r,s}(n) + (-1)^n Q_{r,s}(n),$$

where $P_{r,s}$ and $Q_{r,s}$ are both odd polynomials in $\mathbb{Q}[n]$ (i.e., only odd powers of n occur), $P_{r,s}$ has degree at most 4r + 6s + 1, and $Q_{r,s}$ has degree at most 4r + 6s - 3. The denominators of $P_{r,s}$ and $Q_{r,s}$ are (4r + 6s + 1)-smooth (i.e., they have no prime divisors greater than 4r + 6s + 1).

Proof. Induction on 2r + 3s, using (3) and (5). \Box

Remark. Using (3) and (5), one can compute explicit formulae for any desired $\alpha_{r,s}(n)$, e.g.,

$$\alpha_{1,0}(n) = \begin{cases} \frac{1}{60}n(n^2 - 1)(n^2 + 6), & n \text{ odd}, \\ \frac{1}{60}n(n^2 - 4)(n^2 + 9), & n \text{ even.} \end{cases}$$

Corollary 3. The general division polynomial $f_n(a, b, x)$ can be computed using $O(n^6)$ multiplications and divisions (of integers with $O(n^2)$ digits by integers with $O(\log n)$ digits) and $O(n^6)$ additions (of integers with $O(n^2)$ digits).

Proof. Set x = 1. Starting with $\beta_{\chi(n)}(n) = n$, and $\beta_t(n) = 0$ for $t > \chi(n)$, one can use (2) or (4) as appropriate to compute $\beta_t(n)$ for $t = \chi(n) - 1$, $\chi(n) - 2$, ..., 0. Each application of (2) or (4) requires $O(n^4)$ integer operations of the type given in the statement of the corollary (using Corollary 1 to bound the coefficients), and $O(n^2)$ applications are needed. \Box

JAMES McKEE

3. A comparison with the traditional means for computing f_n

For specific values of a and b, using the recursion formulae (1) seems to be the best (i.e., quickest) method for computing $f_n(a, b, x)$. For computing the general division polynomial $f_n(a, b, x) \in \mathbb{Z}[a, b][x]$, however, this approach is very slow. By homogeneity, it suffices to compute $f_n(a, b, 1)$. The most time-consuming step is the final use of (1), which involves multiplying together polynomials in two variables, of degree $O(n^2)$ in each, so having $O(n^4)$ terms. Thus $O(n^8)$ multiplications of integer coefficients are needed, if one uses "ordinary" polynomial multiplication. By using divide and conquer [1, pp. 62–64] this can be reduced to $O(n^{4\log_2 3}) = O(n^{6.34})$ multiplications of integer coefficients (with $O(n^2)$ digits). Using FFT techniques [1, pp. 252 ff.] we can further reduce this to $O(n^4(\log n)^2)$ multiplications of integer coefficients. Thus, using (1) with FFT would be *ultimately* faster than (2)/(4), but, for reasonable values of n, using (2)/(4) is better.

Using PARI-GP on a Sun 3/60 workstation, we timed the last step in using (1) to compute f_n for a few values of n ($t_1(n)$ in Table 2—this is an underestimate for the time to compute $f_n(a, b, 1)$). By comparison, $t_2(n)$ in Table 2 gives the time taken to compute $f_n(a, b, 1)$ from scratch, using (2) or (4) as appropriate. The polynomial $f_{25}(a, b, 1)$ has 8269 terms with coefficients up to 97 decimal digits long. For small n, using (1) beats using (2)/(4), but the latter method soon becomes better.

TABLE 2. Comparing $t_1(n)$, an underestimate of the time taken to compute $f_n(a, b, 1)$ using (1), with $t_2(n)$, the time taken using (2) or (4) as appropriate

n	$t_1(n)$	$t_2(n)$
10	1s	6s
15	29s	47s
20	2 min 44s	3 min 5s
23	13 min 31s	9 min 29s
25	27 min 23s	15 min 29s

4. Proof of Lemma

First suppose *n* is odd. Fricke, in [2, p. 191], derives a partial differential equation for ψ_n , which for *n* odd translates directly into a partial differential equation for f_n :

(7)
$$(x^3 + ax + b)\frac{\partial^2 f_n}{\partial x^2} - ((n^2 - 3/2)x^2 + (2n^2/3 - 1/2)a)\frac{\partial f_n}{\partial x} - 3n^2b\frac{\partial f_n}{\partial a} + (2n^2a^2/3)\frac{\partial f_n}{\partial b} + n^2(n^2 - 1)xf_n/4 = 0.$$

He comments that this provides linear relations between the coefficients of f_n , which together with $\alpha_{0,0}(n) = n$ suffice to determine f_n , but he complains that this "freilich schon bei n = 5 einen erheblichen Aufwand von Rechnung erfordert", implying that this is not a profitable approach. Here we disagree. Our aim is to make the solution more explicit. Note that although (7) is derived over \mathbb{C} using complex-variable methods, it is just a formal identity in

 $\mathbb{Z}[1/6, a, b][x]$ and as such holds over any field with characteristic not dividing 6.

Equating coefficients of x^{i+1} in (7) gives (2), at least for $i \ge 0$, but since $\beta_t = 0$ for t < 0 one soon checks that (2) holds for negative *i* too.

Set $i = (n^2 - 1)/2 - 2r - 3s$ in (2); then equating coefficients of $a^r b^s$ gives (3).

For *n* even, replace f_n by yf_n in (7), giving

$$(x^{3} + ax + b)\frac{\partial^{2} f_{n}}{\partial x^{2}} - ((n^{2} - 9/2)x^{2} + (2n^{2}/3 - 3/2)a)\frac{\partial f_{n}}{\partial x} + ((n^{2} - 3)(n^{2} - 4)x/4)f_{n} - 3n^{2}b\frac{\partial f_{n}}{\partial a} + (2n^{2}a^{2}/3)\frac{\partial f_{n}}{\partial b} = 0.$$

Equating coefficients of x^{i+1} gives (4) for $i \ge 0$, but again this extends to all i.

Set $i = (n^2 - 4)/2 - 2r - 3s$ in (4); then equating coefficients of $a^r b^s$ gives (5). \Box

ACKNOWLEDGMENTS

I should like to thank Richard Pinch and an anonymous referee for their helpful comments.

BIBLIOGRAPHY

- 1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, *The design and analysis of computer algorithms*, Addison-Wesley, Reading, MA, 1974.
- 2. R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Vol. 2, Teubner, Leipzig, 1922.
- 3. J. Silverman, *The arithmetic of elliptic curves*, Graduate Texts in Math., vol. 106, Springer-Verlag, New York, 1986.
- 4. H. Weber, Lehrbuch der Algebra. III, 3rd ed., Chelsea, New York, 1961.

DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS, UNIVERSITY OF CAM-BRIDGE, CAMBRIDGE CB2 1SB, ENGLAND

E-mail address: jfm@pmms.cam.ac.uk